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The signals recorded by diffusion-weighted magnetic resonance imaging (DWI) are dependent on the
micro-structural properties of biological tissues, so it is possible to obtain quantitative structural infor-
mation non-invasively from such measurements. Oscillating gradient spin echo (OGSE) methods have
the ability to probe the behavior of water diffusion over different time scales and the potential to detect
variations in intracellular structure. To assist in the interpretation of OGSE data, analytical expressions
have been derived for diffusion-weighted signals with OGSE methods for restricted diffusion in some typ-
ical structures, including parallel planes, cylinders and spheres, using the theory of temporal diffusion
spectroscopy. These analytical predictions have been confirmed with computer simulations. These
expressions suggest how OGSE signals from biological tissues should be analyzed to characterize tissue
microstructure, including how to estimate cell nuclear sizes. This approach provides a model to interpret
diffusion data obtained from OGSE measurements that can be used for applications such as monitoring
tumor response to treatment in vivo.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Measurements of tissue structure over different distance scales
may be important in both clinical and research applications. For
example, the size of axons reflects structure in white matter and
the conduction velocity of myelinated neurons varies roughly lin-
early with axon diameter [1–3]. Similarly, it has been reported that
rates of cell division may be closely related to cell size. For some
cells, there is a mechanism by which cell division is not initiated
until a cell has reached a certain size [4] while measurements of
tumor cell nuclear size have been suggested as a biomarker for tu-
mor detection and grading [5,6]. Usually, histological information
may be obtained only from invasive biopsies. However, diffusion-
weighted (DW) magnetic resonance imaging is dependent on spe-
cific micro-structural properties of biological tissues, so it may be
possible to obtain quantitative structural information non-inva-
sively from DWI measurements. Diffusion in tissues is slower than
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in free solutions because tissue compartments hinder or restrict
fluid motions, and the reduction in diffusion rates reflects the scale
and nature of the tissue environment.

Stejskal suggested the use of a conditional probability ap-
proach to describe restricted diffusion analytically [7] and this ap-
proach enables an averaged diffusion propagator to be used to
reveal dynamic displacements of water molecules in a certain dif-
fusion time in q-space [8]. Cory used this method to demonstrate
that the size of a diffusion compartment can be obtained from
appropriate diffusion NMR experiments [9]. Others have derived
the analytical conditional probability functions and signal attenu-
ation dependence of diffusion within some simple geometries,
such as diffusion between two infinitely large impermeable
planes, or inside an infinitely long impermeable cylinder or an
impermeable sphere [10–12]. Neuman modeled DW signals with
a constant field gradient [13] and based on this analysis, Assaf
et al. developed an AxCaliber model to obtain the diameter distri-
bution of nerve axons [3]. Similarly, Zhao et al. estimated HeLa
cell sizes [14] based on a statistical model [15] and the analytical
root mean square (rms) displacement in a sphere at long diffusion
times. All of these approaches are based on measurements using
the pulsed gradient spin echo (PGSE) method with assumptions of
short-gradient durations and/or long diffusion times. However, in
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practice, the finite duration of gradients may invalidate the short
gradient approximation. More importantly, conventional PGSE
methods are insensitive to relatively short distance scales, such
as those that characterize intracellular structures, because they
incorporate relatively long diffusion times necessitated by hard-
ware limitations. By contrast, oscillating gradient spin echo
(OGSE) methods at high frequencies can probe short diffusion
times and, hence, have the potential to detect changes over much
shorter length scales [16]. The OGSE method has been success-
fully implemented experimentally to probe structural information
including short length scales in packed beads [17], in vivo in
ischemic rat brain [18], to study hyperpolarized gas diffusion
[19] and to characterize tumors [20]. However, due to the rela-
tively complicated gradient waveforms used in the OGSE method,
analytical descriptions of DW signals with OGSE have not previ-
ously been reported. An appropriate model would be useful in or-
der to interpret DW data obtained from OGSE measurements
quantitatively.

Callaghan developed a simple matrix formalism to analyze
restricted diffusion with generalized diffusion gradient waveforms
quasi-analytically [21]. This approach discretizes the waveforms
into many short pulses and calculates the MR signal attenuation
recursively. However, it does not provide a simple analytical
expression to describe the explicit relation of MR signals and tissue
parameters. A frequency-domain analysis, which we have termed
temporal diffusion spectroscopy [22], was originally introduced
by Stepisnik [23,24]. Using a Gaussian approximation for the phase
distribution, this analysis shows the DW signal attenuation is
dependent on temporal auto-correlation function of the water
molecule velocity at short diffusion scales. The frequency-domain
analysis explicitly identifies the diffusion coefficient as a function
of the frequency spectral content of the molecular velocity and
reveals the relation between the choice of gradient waveforms
and effective diffusion times [25]. In the present work, we build
on these ideas and derive explicit analytical expressions for the
DW echo signal attenuation for two commonly used OGSE meth-
ods, employing sine-modulated and cosine-modulated waveforms,
respectively, for specific structures with known conditional proba-
bilities. Based on the derived analytical equations, we have fitted
simulated diffusion data in two model tissues (mimicking white
matter and tumor) in order to show how quantitative tissue struc-
tural information, such as axon size and cell nuclear size, can be
extracted. These results suggest how experimental OGSE data
should be fitted and interpreted. The limitation of our model and
the influence of the signal-to-noise ratios (SNR) of experimental
measurements were also investigated.

2. Theory

2.1. Temporal diffusion spectroscopy with restricted diffusion

It has been previously shown that the DW echo signal attenua-
tion can be described as [24]

Eð2sÞ ¼ exp½�bð2sÞ�

¼ exp � c2
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where b = the signal echo attenuation, s = half of the echo time,
r = the water molecule position, g = diffusion gradient and h i de-
notes the ensemble average. With the presence of diffusion restric-
tions, a conditional probability P may be introduced, which can be
expressed in a general solution as [26]

Pðr1; t1jr2; t2Þ ¼
X

n

expð�knDjt1 � t2jÞunðr1Þu�nðr2Þ; ð2Þ
where the un(r) are orthogonal functions dependent on geometries.
By substituting Eq. (2) into Eq. (1) as shown below, Stepisnik ob-
tained the signal echo attenuation [24]
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Bn and kn are structure dependent coefficients. For example, for
diffusion between two impermeable planes separated by a dis-
tance d,

Bn ¼
8d2

ð2n� 1Þ4p4
and kn ¼

p2ð2n� 1Þ2

d2 : ð5Þ

For diffusion inside an impermeable cylindrical geometry with a
radius R and gradients in the direction perpendicular to the axis of
the cylinder,

Bn ¼
2ðR=lnÞ

2

l2
n � 1

and kn ¼
ln

R

� �2
: ð6Þ

Here ln is the nth root of J01ðlÞ ¼ 0 and J1 is a Bessel function of
the first kind. For a spherical geometry, the expression for Bn is

Bn ¼
2ðR=lnÞ

2

l2
n � 2

; ð7Þ

and kn are the same as for a cylindrical geometry except ln becomes
the nth root of lJ03=2ðlÞ � 1

2 J3=2ðlÞ ¼ 0 [24]. For diffusion inside an
impermeable spherical shell (a < r < b), the expression for Bn is

Bn ¼
2a3b3½j01ðknaÞ � j01ðknbÞ�2

k2
nðb

3 � a3Þfa3ðk2
nb2 � 2Þj021 ðknaÞ � b3ðk2

na2 � 2Þj021 ðknbÞg
: ð8Þ

The detailed explanation of Eq. (8) and the corresponding con-
ditional probability function are given in Appendix A.

2.2. Modeling DW signals with OGSE

Based on the theory introduced above, we have derived analyt-
ical expressions for the DW echo attenuation for restricted diffu-
sion with two commonly used OGSE waveforms, cos-OGSE and
sin-OGSE. The effective diffusion gradient of the cos-OSGE method
has a cosine-modulated waveform as

gðtÞ ¼
G cos½xt� 0 < t < r
�G cos½xðt � sÞ� s < t < ðsþ rÞ
0 else

8><
>: ; ð9Þ

while the sin-OGSE method uses

gðtÞ ¼
G sin½xt� 0 < t < r
�G sin½xðt � sÞ� s < t < ðsþ rÞ
0 else

8><
>: : ð10Þ

Here G is the gradient amplitude, x the diffusion gradient angu-
lar frequency, r is the gradient duration, s half of the echo time. By
substituting Eq. (9) and Eq. (10) into Eq. (3), an analytical expres-
sion for signal echo attenuation can be obtained after a straightfor-
ward derivation. For the cosine-modulated waveform,



Fig. 1. Healthy white matter tissues are modeled as a cylindrical array with an
arrangement of square lattice.
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while for the sin-OGSE waveform
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Here D is the intrinsic diffusion coefficient. The connection of
Eq. (11) with previously published analytical DW signal models,
including the PGSE models, can be found in Appendix B. Note that
the b value of cos-OGSE is [27]

b ¼ c2G2r
4p2f 2 : ð13Þ

The frequency-domain analysis shows that, ideally, the cos-
OGSE has a well defined frequency and corresponds to a single dif-
fusion time [22,25], which simplifies the interpretation of OGSE
measurements. Therefore, the cos-OGSE waveform and Eq. (11)
are used throughout the rest of this work.

The analytical expressions can be compared to the predictions
of computer simulations of diffusion in simple systems. We have
previously reported our method for simulating diffusion using a fi-
nite difference approach [28] and this has been applied to predict
the behaviors of OGSE measurements in tissues. We show how it
is then feasible to fit such data using the analytical expressions
shown above and to extract quantitative structural parameters of
the media.

3. Methods

3.1. Diffusion between two parallel planes

First, the elementary case of diffusion between two infinitely
large impermeable parallel planes using the cosine OGSE wave-
form was studied. This model illustrates the major physical effects
of restricted diffusion and how these interact with the OGSE
parameters. The DW signal echo attenuation was simulated as de-
scribed below and then compared with the analytical results pre-
dicted by Eq. (11). A one-dimensional gradient was considered
perpendicular to the planes and the distance between the planes
was 10 lm, corresponding to a typical human cell size. Five diffu-
sion gradient frequencies (100, 500, 1000, 2000 and 3000 Hz) were
considered, each using 13 b values (11 values ranged evenly from 0
to 5000 mm2/s and two additional b values of 100 mm2/s and
300 mm2/s to show signal variations at low b values). The simula-
tion used spatial resolution Dx = 0.1 lm, time increment Dt = 1 ls
and diffusion coefficient D = 2.0 lm2/ms.

3.2. Cylindrical array

Axons have often been modeled as cylinders [29–32] and white
matter may be considered as an array of two compartment cylinders
in which components with short T2 (e.g., myelin water) are treated as
negligible in the simulation due to the relatively long experimental
echo times. As suggested by Ford and Hackney [30], cylinders were
placed on a square lattice to simulate healthy white matter (see
Fig. 1). The diffusion gradients are perpendicular to the axis of cylin-
ders. It has been reported that the water exchange between axons
and extracellular space is intermediate or slow [33] and so the inter-
face permeability was set equal to zero. There are then two diffusion
modes in this system: restricted diffusion inside the axon and
hindered diffusion in the extracellular space [32]. The total signal
echo attenuation from such a model tissue is then simply the sum
of the signals arising from the two compartments

E ¼ faxon expð�bð2sÞÞ þ ð1� faxonÞ expð�bDexÞ; ð14Þ

where b(2s) is the signal echo attenuation of water inside axons, Dex

is the hindered diffusion coefficient of extracellular space, and faxon

is the volume fraction of axons. b can be obtained from Eq. (11) with
structural parameters introduced in Eq. (6). It should be noted that
the signal from extracellular space is described as a mono-exponen-
tial function, so a Gaussian approximation has been assumed [34].

In the simulation, the intra- and extra-cellular intrinsic diffu-
sion coefficients are assumed to be 1.00 and 2.00 lm2/ms, respec-
tively. The cylinders have a diameter of 1.96 lm, similar to a
typical human axon size, and the spacing of the lattice is 2.1 lm,
yielding a cylinder volume fraction 75.25%. The total signal echo
attenuation was simulated and then fit to Eq. (14). All pulse se-
quence parameters used in the simulation were chosen to be
experimentally practical values, such as b values (11 values, rang-
ing evenly from 0 to 500 s/mm2) and four gradient frequencies
(100, 250, 500 and 1000 Hz) with TE = 40 ms. Again, Dx = 0.1 lm,
Dt = 1 ls and a unit cell only was needed to be simulated [28],
using a matrix of 20 � 20 elements.

To study the sensitivity of fitting the OGSE data to the presence
of noise inherent in the diffusion measurements, the statistical
properties of the fitted parameters obtained from our model, such
as axon radius, were analyzed by adding different levels of back-
ground noise to the simulated data. This was implemented using
the method proposed by Pierpaoli and Basser [35].

3.3. A 3D three-compartment tissue model

Cell size and cell density are important features of biological tis-
sues, while the dimensions of sub-cellular structures such as the
nucleus are also informative as potential biomarkers for diagnostic
purposes or for characterizing the status of tumors [36]. In order to
make diffusion measurements sensitive specifically to features
such as nuclear size, the diffusion times incorporated into the mea-
surements must be much shorter than those in common PGSE
methods. We have previously reported that the cos-OGSE method
can be sensitive to variations in intracellular structure, which are
otherwise barely detectable by conventional PGSE methods [16].
However, in order to describe tissue microstructure more quantita-
tively and to be able to derive values for features such as cell nucle-
ar size, an appropriate tissue model and analytical DW signal
expressions must be developed.



Fig. 2. A 3D multiple-compartment tissue model. Black regions are cell nuclei, gray
are cytoplasm and extracellular space everywhere else. All cells are packed on a face
centered cubic (FCC) lattice and a unit cell is shown here. Note that cells are shown
apart than the real arrangement for visual purpose.
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Fig. 2 shows a three-compartment three-dimensional tissue
model consisting of spherical cells packed on a face centered cubic
(FCC) lattice. Each cell contains a central spherical nucleus. As a re-
sult, there are three distinct compartments containing water in this
model, corresponding to intra-nuclear, cytoplasmic and extracellu-
lar spaces. Each component in this model can be ascribed its own
intrinsic parameters, including proton density, T2 and water self-
diffusion coefficient. However, proton density and T2 values were
assumed to be homogeneous in order to highlight the effects of dif-
fusion. For the OGSE method, the effective diffusion time is on the
order of the period of gradient oscillations [27], which can be smal-
ler than a few milliseconds (corresponding to gradient frequencies
higher than a few hundreds of hertz). In contrast, the intracellular
water exchange lifetime has been reported to be two orders of
magnitude larger, e.g., the HeLa cell intracellular water lifetime
was estimated to be 119 ± 14 ms [37]. Therefore, we can neglect
the influence of the water exchange between intra- and extra-cel-
lular spaces during the OGSE measurements. For the nuclear enve-
lope separating intra-nuclear and cytoplasmic compartments,
there is not sufficient experimental data to describe the effects of
water exchange on apparent diffusion at short time scales; how-
ever, we can estimate the exchange influence in our OGSE mea-
surements. Water exchange across the nuclear envelope is by
diffusion through nuclear pores [38]. The nuclear pore surface den-
sity is �10 lm�2 for human cells [39] and the effective radius of
each pore for Fick diffusion is 20 nm [40]. Thus, typically the sur-
face fraction of pores is �1.3% which means a water molecule that
encounters the nuclear envelope has a probability �0.013 to cross.
For typical cell sizes and diffusion coefficients as described below,
if the effective diffusion time is <2 ms, only the spins inside spher-
ical shells with thickness <2.3 lm (in the nucleus) and <1.4 lm (in
the cytoplasm) are considered likely to encounter the nuclear
envelope. Hence, less than 2% of spins in the intra-nucleus or cyto-
plasm will exchange during a short diffusion time <2 ms. There-
fore, water exchange across the nuclear envelope can be ignored
in OGSE measurements with short diffusion times. If the effective
diffusion time becomes long, as in conventional PGSE measure-
ments, this approximation is no longer valid and the water ex-
change effect across the nuclear envelope must be considered.
Consequently, all the interfaces between the compartments in
the tissue model can be effectively modeled as impermeable if
the OGSE method is implemented with relatively high gradient fre-
quencies. As a result, the total signal can be modeled as a sum of
independent signals, each arising from one compartment.

The diffusion inside the intra-nuclear and cytoplasmic spaces is
considered to be restricted, and the diffusion in the extracellular
space was modeled as hindered and ascribed a constant diffusion
coefficient. The total DW signals can then be expressed as

E ¼ fnuc expð�bnucÞ þ fcyto expð�bcytoÞ þ ð1� fnuc � fcytoÞ expð�bDexÞ;
ð15Þ

where bnuc and bcyto represent the signal echo attenuation of intra-
nuclear and cytoplasmic spaces, respectively, and fnuc, fcyto represent
proton fractions (equal to volume fractions because proton density
is assumed to be homogeneous). Therefore, there are six indepen-
dent fitting parameters in Eq. (15); Rnuc and Rcell are the radii of nu-
clei and cells, respectively; Dnuc, Dcyto and Dex are the diffusion
coefficients of the three compartments; and fnuc is the volume frac-
tion of nuclei. The volume fraction of cytoplasm fcyto is a dependent
parameter which can be expressed as fcyto ¼ fnucðRcell=RnucÞ3 � fnuc .

The signal echo attenuation was simulated and then fit to Eq.
(15). All cell structural parameters used in the simulation were
chosen from published experimental results [41,42]: the intrinsic
diffusion coefficients for nucleus = 1.31 lm2/ms, cyto-
plasm = 0.48 lm2/ms and the extracellular space = 1.82 lm2/ms.
Spherical cells were given a diameter of 10 lm, spacing 10.6 lm
for neighboring cells and each cell contained a central spherical nu-
cleus with a diameter of 7.5 lm. All pulse sequence parameters
were experimentally practical values, such as b values (11 values,
ranging evenly from 0 to 500 s/mm2) and three gradient frequen-
cies (250, 500 and 1000) with TE = 40 ms. A 3D grid of
60 � 60 � 60 elements with Dx = 0.25 lm, Dt = 2 ls was simu-
lated. The sensitivity of the fitting OGSE data to the presence of
noise was also studied.

3.4. Finite difference simulations and data fitting

An improved finite difference method [28] was used for the
simulations to calculate the evolution of the diffusion-weighted
NMR signals. It includes a revised periodic boundary condition that
removes the computational edge effect artifact found using con-
ventional finite difference methods and employs parallel comput-
ing to enhance the computing efficiency. Further details of the
computational aspects of our method have been reported previ-
ously [28]. All large-scale simulations were performed on the
supercomputer of the Vanderbilt University Advanced Computing
Center for Research & Education. The programs were written in C
(GCC 4.1.2) with message passing interface (MPICH2) running on
a 64-bit Linux operation system and Opteron processor (2.0 GHz)
nodes with a Gigabit Ethernet network. Plane and cylindrical array
simulations were performed on a single processor while the 3D
simulation was performed with parallel computing using eight
processors.

All simulated data with and without noise were analyzed with a
nonlinear regression routine (employing the Levenberg–Marqu-
ardt minimization algorithm) using MATLAB R2008a (Mathworks,
Natick, MA).

4. Results

Fig. 3 compares the simulated and analytical signal echo atten-
uations for restricted diffusion between two infinitely large imper-
meable planes. The effective diffusion time monotonically
decreases with increasing diffusion gradient frequency, so the sig-
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Fig. 3. Comparison of simulated (markers) and analytical (lines) signal echo
attenuation of restricted diffusion between two infinitely large impermeable
planes.

Table 1
Comparison of real structural parameters used in simulations and fitted parameters
for the cylindrical array.

R (lm) Din (lm2/ms) Dex (lm2/ms) faxon (%)

Real value 0.98 1.00 2.00 75.25
Fitted value 0.99 1.00 0.69 76.79
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nal echo attenuation curves vary for different frequencies. For a
certain gradient amplitude, the b value decreases when the gradi-
ent frequency increases, so the signal is more attenuated for a low-
er frequency at the same gradient amplitude.

The simulated and analytical signal echo attenuations shown in
Fig. 3 agree well but do not match exactly. A small discrepancy can
be found at higher gradient amplitudes and lower gradient fre-
quencies. For example, at f = 3 kHz, the percentage difference of
the simulated and analytical signals increases from 0% to 2.9%
when the b values increase from 0 to 5000 mm2/s. This may be be-
cause Eq. (1) invokes a Gaussian approximation to the signal atten-
uation, which ignores the contribution of the spin phase shift
distribution to the signal echo attenuation and it may deviate from
the true values at long diffusion times and/or high diffusion-
weighting [43]. However, for realistic b values used in practice,
our analytical expressions are close to unbiased. For commonly
used b values in the OGSE measurements (<3000 s/mm2), the ana-
lytical signal yields only a 2% deviation from simulated data at
moderately high frequencies. Thus, the analytical expressions for
the OGSE signal echo attenuation introduced above are valid for
realistic b values, moderate and high gradient frequencies.

Fig. 4 shows the simulated signal echo attenuation without
noise (markers) of the cylinder array shown in Fig. 1. Eq. (14)
was used to fit all simulated data. The fitted structural parameters
and the corresponding values used in simulations are shown in Ta-
ble 1, in which R is the radius of axon, Din and Dex are diffusion coef-
ficients of axons and extracellular space, respectively. As expected,
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Fig. 4. Simulated signal echo attenuation (markers) of modeled white mater tissue
(shown in Fig. 1). Solid lines are corresponding fitted curves.
the fitted extracellular diffusion coefficient Dex is smaller than the
intrinsic value because the extracellular space is modeled as show-
ing hindered diffusion and the fitted Dex is actually a hindered dif-
fusion coefficient, representing the averaged effects of obstruction
by the barriers. All of the other fitted parameters have less than 1%
difference.

To comprehensively study the influence of the signal-to-noise
ratio (SNR) on the fitted parameter of the analytical model pre-
sented in the current work, background noise of different levels
was added to the simulated signals, and then the fitting was re-
peated 5000 times for each SNR. Fig. 5 shows the distribution of
the fitted axon radii changes with SNR. At SNR = 50, the fitted axon
radii ranges from 0.8 to 1.8 lm with a peak at 0.9 lm, correspond-
ing to an error range �20% to 80%. At SNR = 800, >99% fitted axon
radii have less than 5% error.

Fig. 6 shows the comparison of the simulated (without noise)
and fitted signal attenuation for the three-dimensional three-com-
partment tissue model illustrated in Fig. 2. The simulated data
were fit very well by the analytical expressions, and the fitted
structural parameters are listed in Table 2. All fitted parameters
have less than 1% difference compared with the actual values, ex-
cept the hindered diffusion coefficient Dex is much lower as ex-
pected. Based on the fitted parameters shown in Table 2, the
volume fractions of cytoplasm and extracellular space can be cal-
culated as 36.00% and 37.67%, matching the actual values
(35.66% and 38.15%) well.

Figs. 7 and 8 shows how fitted nuclear radii and cell radii
change with SNR, respectively. Compared with the 2D model
shown in Fig. 5, the 3D model is more sensitive to the noise. The
fitted nuclear radii and cell radii show relatively broad ranges with
low SNRs, such as when SNR = 50, 90% fitted nuclear radii are in the
range [1.45 lm, 5.75 lm], corresponding to an error range [�61%,
53%]. When SNR = 800, 90% fitted nuclear radii range is [3.32 lm,
3.92 lm], corresponding to an error range [�11.5%, 4.5%].

5. Discussion

Temporal diffusion spectroscopy as described here is different
from diffusion q space imaging. In the latter the propagator is usu-
ally defined at a given diffusion time and has spatial and direc-
tional dependences over a large range of q space. In contrast, in
temporal diffusion spectroscopy the effective diffusion times are
changed by changing diffusion gradient frequencies, and thus a
spectrum of diffusion rates can be measured which describe the
biological tissue microenvironment [22]. Considering the strength
limitation of conventional gradient systems, the model introduced
in this work does not use the whole spectrum but rather several
discrete frequencies and multiple b values, but from these mea-
surements quantitative tissue micro-structural information can
be obtained.

Our model is based on Eq. (1), which is derived from a Gaussian
phase approximation [34,44,45]. For conventional diffusion mea-
surements with the PGSE method, this approximation is often vio-
lated especially at high b values with relatively long diffusion
times. The OGSE method has the ability to reduce the effective dif-
fusion time significantly so that a Gaussian approximation is still
valid. Note that violating the Gaussian approximation may contrib-
ute errors and may increase the discrepancies between real and fit-
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Fig. 5. For each SNR, data fitting for the cylinder array model was repeated 5000 times and the distributions of fitted axon radii changing with SNR are shown here. Dashed
lines represent the real value.
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ment tissues (shown in Fig. 2). Solid lines are corresponding fitted curves.
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ted parameter values. Hence, it is prudent to apply high enough
gradient frequencies in experiments so that the method introduced
in the present work can be implemented accurately.

In the cylindrical array tissue model (mimicking white matter),
the diffusion gradients have been assumed perpendicular to the
axis of cylinders. It is also of interest to study diffusion tensor
imaging (DTI) in which diffusion gradients have angular depen-
dence with respect to fiber orientations in three dimensions. An
approach similar to the CHARMD model [32], which analyzes per-
pendicular and parallel diffusion signals separately, might be anal-
ogously implemented to expand the current method to DTI studies,
except that the current method is expected to depend on gradient
frequencies significantly.
Table 2
Comparison of real structural parameters used in the simulations and fitted parameters fo

Rnuc (lm) Rcell (lm) Dnuc (lm2/m

Real value 3.75 5.00 1.31
Fitted value 3.72 4.97 1.30
The diffusion in the extracellular space in both the 2D and 3D
models is modeled as hindered diffusion with mono-exponential
signal attenuation. In the long diffusion time region, the hindered
diffusion coefficient can be calculated from the tortuosity of the
extracellular space. For the 2D model consisting of cylinders on a
square array, the tortuosity of the extracellular space can be esti-
mated as �9.1 using the theoretical model for diffusion in white
matter developed by Sen and Basser [46], simply setting the water
concentration in the axon equal to zero and the volume fraction of
myelin to zero. Hence, the long time effective diffusion coefficient
of the extracellular space is �0.22 lm2/ms which is much smaller
than the fitted Dex = 0.66 lm2/ms. This again shows that a short
effective diffusion time has been achieved by OGSE methods.

There are some limitations of implementing the method devel-
oped in this paper. One important factor is the diffusion gradient
strength. The b value of OGSE pulse sequences is proportional to
1/f2 (see Eq. (13)), and r is limited by T2 relaxation. Hence, it is usu-
ally difficult to achieve high b values at high gradient frequencies.
OGSE methods have been readily implemented in vivo on animal
scanners [20,27], but their use on human scanners is limited by
current practical gradient systems. Computer simulations show
that SNR of at least several hundreds must be achieved in order
to characterize tissue micro-structural information accurately,
while fitting diffusion coefficients need an even higher SNR. There-
fore, SNR is another crucial limiting factor affecting the application
of this approach.

6. Conclusions

Novel expressions have been developed to allow the predictions
of temporal diffusion spectroscopy theory to be used to interpret
data obtained from OGSE measurements. Compared with other
r the 3D three-compartment tissue model.

s) Dcyto (lm2/ms) Dex (lm2/ms) fnuc (%)

0.48 1.82 26.20
0.47 1.41 26.33
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Fig. 7. For each SNR, data fitting for 3D cell-packing modeled tissue was repeated 5000 times and the distributions of fitted nuclear radii changing with SNR are shown here.
Dashed lines represent the real value.
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Fig. 8. The distributions of fitted cell radii of the 3D cell-packing modeled tissue changing with SNR are shown here. Dashed lines represent the real value.
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models with conventional PGSE methods, this approach has the
ability to extract quantitative tissue structural information, includ-
ing cell nuclear sizes, which are usually not obtainable using con-
ventional methods non-invasively. This approach provides new
structural parameters which may be helpful to follow intracellular
changes in tissues and potentially can be used for applications such
as monitoring tumor response to treatment in vivo.
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Appendix A

We derived the analytical expression of conditional probability
for restricted diffusion inside an impermeable spherical shell
(a < r < b) as

Pðr; tjr0; 0Þ ¼
3

4pðb3 � a3Þ
þ
X1
n¼1

X1
m¼1

AnmUnðknmrÞPnðcos hÞ

Unðknmr0ÞPnðcos h0Þ expð�k2
nmDtÞ; ðA1Þ
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where

Anm ¼
ð2nþ1Þk6

nma3b3

2p a3½k2
nmb2�nðnþ1Þ� j0nðknmaÞ

j0nðknmbÞ

h i2
�b3½k2

nma2�nðnþ1Þ�
� � ðA2Þ

UnðknmrÞ ¼ y0nðknmaÞjnðknmrÞ� j0nðknmaÞynðknmrÞ; ðA3Þ

and knm is the mth root of the equation

y0nðknmaÞj0nðknmbÞ ¼ j0nðknmaÞy0nðknmbÞ; ðA4Þ

where jnðrÞ ¼ r�1=2Jnþ1=2ðrÞ and ynðrÞ ¼ r�1=2Ynþ1=2ðrÞ, Jn+1/2 and Yn+1/2

are Bessel functions of the first and the second kind, respectively.
Eq. (A1) and Eq. (4) yield the Bn coefficient as

Bn ¼
2a3b3½j01ðknaÞ � j01ðknbÞ�2

k2
nðb

3 � a3Þfa3ðk2
nb2 � 2Þj021 ðknaÞ � b3ðk2

na2 � 2Þj021 ðknbÞg
: ðA5Þ

If a ? 0, a spherical shell becomes a sphere and Eq. (A5) be-
comes identical to Eq. (7).

Appendix B

Recall Eq. (11)

bð2sÞ ¼2ðcgÞ2
X

n

Bnk
2
nD2

ðk2
nD2 þx2Þ2

ðk2
nD2 þx2Þ

knD
r
2
þ sinð2xrÞ

4x

� �(

�1þ expð�knDrÞ þ expð�knDsÞð1� coshðknDrÞÞ
�
; ðB1Þ

where x is the gradient angular frequency, r the gradient duration
and s half of the echo time. Eq. (B1) is the analytical expression for
signal attenuation of cos-OGSE with restricted diffusion. When the
diffusion time is short compared to the time for molecules to reach
the boundary, i.e., 1

knD >> s, Eq. (B1) becomes

bð2sÞ ¼ c2G2Dr
x2 ¼ c2G2r

4p2f 2 D: ðB2Þ

Note that the fact
P

nBnkn ¼ 1 is used. Eq. (B2) describes free dif-
fusion with the cos-OGSE method which is equivalent to results
derived in Ref. [27].

If x! 0, a cos-OGSE pulse degenerates into a conventional
PGSE pulse and Eq. (B1) becomes

bð2sÞ ¼2
cg
D

� �2X
n

Bn

k2
n

knDr� 1þ e�knDr�
þe�knDsð1� coshðknDrÞÞ

	
; ðB3Þ

which has been reported previously [24].
If s = r, Eq. (B3) yields

bð2sÞ ¼ cG
D


 �2X
n

Bn

k2
n

2knDs� 3þ 4 expð�knDsÞ � expð�2knDsÞ½ �;

ðB4Þ

which describes the signal echo attenuation for a magnetic-field
gradient pulse. Eq. (B4) has also been obtained in Ref. [47], which
used a different approach.
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